跳至主要内容

Pipe elbows

Pipe elbows are used to be installed between two lengths of pipe or tube allowing a change of direction,usually these elbows distinguished by connection ends.

Type and production range of pipe elbow

Our pipe elbows are made from a range of materials, like stainless steel, alloy, carbon, and high-performance steel, and from nonferrous materials and plastics.

Production range Pipe  Elbow Pipe Bend
Type Seamless Seamless
Welded Welded
Outside diameter DN 15 - DN 1000 DN 15 - DN 800
DN 250 - DN 1800 DN 250 - DN 1800
Wall thickness 2.0 - 120 mm 2.0 - 120 mm
Bending radius 1.0 D (SR)  , 1.5 D (LR) ≥2.0 D 
Product angle 0°-180° 0°-180°

The ends of our elbows are designed for your convenience on-site, and are able to be machined for butt, threaded, or socket welding.

General Standard

Standard Specification
ASTM A234 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
ASTM A420 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service
ASTM A403 Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings

ASTM A234

This specification covers wrought carbon steel & alloy steel fittings of seamless and welded construction. Unless seamless or welded construction is specified in order, either may be furnished at the option of the supplier. All welded construction fittings as per this standard are supplied with 100% radiography. Under ASTM A234, several grades are available depending upon chemical composition. Selection would depend upon pipe material connected to these fittings.

Tensile Requirements WPB WPC, WP11CL2 WP11CL1  WP11CL3
Tensile Strength, min, ksi[MPa] 60-85 70-95 60-85  75-100
(0.2% offset or 0.5% extension-under-load) [415-585] [485-655] [415-585]  [520-690]
Yield Strength, min, ksi[MPa] 32 40 30 45
[240] [275] [205] [310]

Some of the grades available under this specification and corresponding connected pipe material specification are listed below:


ASTM A403

This specification covers two general classes, WP & CR, of wrought austenitic stainless steel fittings of seamless and welded construction.

Class WP fittings are manufactured to the requirements of ASME B16.9 & ASME B16.28 and are subdivided into three subclasses as follows:

  • WP – SManufactured from seamless product by a seamless method of manufacture.
  • WP – W These fittings contain welds and all welds made by the fitting manufacturer including starting pipe weld if the pipe was welded with the addition of filler material are radiographed. However no radiography is done for the starting pipe weld if the pipe was welded without the addition of filler material.
  • WP-WX These fittings contain welds and all welds whether made by the fitting manufacturer or by the starting material manufacturer are radiographed.

Class CR fittings are manufactured to the requirements of MSS-SP-43 and do not require non-destructive examination.

Under ASTM A403 several grades are available depending upon chemical composition. Selection would depend upon pipe material connected to these fittings. Some of the grades available under this specification and corresponding connected pipe material specification are listed below:


ASTM A420

This specification covers wrought carbon steel and alloy steel fittings of seamless & welded construction intended for use at low temperatures. It covers four grades WPL6, WPL9, WPL3 & WPL8 depending upon chemical composition. Fittings WPL6 are impact tested at temp – 50° C, WPL9 at -75° C, WPL3 at -100° C and WPL8 at -195° C temperature.

The allowable pressure ratings for fittings may be calculated as for straight seamless pipe in accordance with the rules established in the applicable section of ASME B31.3.

The pipe wall thickness and material type shall be that with which the fittings have been ordered to be used, their identity on the fittings is in lieu of pressure rating markings.

Steel No. Type Chemical composition
C Si S P Mn Cr Ni Mo Other ób ós δ5 HB
WPL6 0.3 0.15-0.3 0.04 0.035 0.6-1.35 0.3 0.4 0.12 Cb:0.02;V:0.08 415-585 240 22
WPL9 0.2 0.03 0.03 0.4-1.06 1.6-2.24 435-610 315 20
WPL3 0.2 0.13-0.37 0.05 0.05 0.31-0.64 3.2-3.8 450-620 240 22
WPL8 0.13 0.13-0.37 0.03 0.03 0.9 8.4-9.6 690-865 515 16

Hot pushing elbow is seamless elbow to adoption of a process for manufacturing the elbow making machine, core mold and heating device, using a set of machine on the mould of billet in elbow push system run to front, under the impetus of the heated in the pipe run hole enlargement and forming process.

By default, there are 5 opportunities, the 45°, 90° and 180° elbows, all three in the "long radius" version, and in addition the 90° and 180° elbows both in the "short radius" version.

What Parts of the exported elbows?

The custom degree elbows can be manufactured directly from the production design,also can be cut from a standard elbow.For example,the cut the 70 degree elbows from a 90 degree one.

Bends & elbows are epxorted to UAE

5D Bend , A 105 BE, SMLS ASME B 16.9 Size : ¾” SCH 80 , 45 Deg.

6D Bend , Size : ½” SCH 160, 45 Deg, A 420 WPL6, BE , SMLS

6D Bend , Size : 2” SCH 160, 45 Deg. A 420 WPL6  WPL6, BE , SMLS

6D Bend , Size : ¾” SCH 160, 45 Deg, A 420 WPL6, BE , SMLS

6D Bend , Size : ¾”  SCH 160,  90 Deg. A 420 WPL6, BE , SMLS

6D Bend , Size : ½” , SCH 160, 90 Deg. A 420 WPL 6, BE SMLS

6D Bend , Size : ½” SCH 40, 90 Deg . A 420 WPL 6, BE SMLS

Butt welded elbows are exproted to USA

26” STD WELDED OR SMLS BW SR 90 DEG. ELBOW ASTM A234 WP22 

S235 elbows exported to Italy

S235 Ø114.3*3.6 2S 180 GR (R=1D) Elbow

304 stainless steel elbow exported to Indonesia

304 Stainless steel elbow 90, DN 100; 108 x 3.5

3D elbows exported to Italy

S235 Ø114.3*3.6 2S 180 GR (R=1D) Elbow

Carbon steel ASTM A53 Grade B elbow exported to Chile

Carbon Steel ASTM A 53 GRADE B Elbow DN 150 STD 90 degree SR

Seamless 90deg elbow exported to Philippines

SEAMLESS 90DEG ELBOW .FLANGED L.R.E A234WPB

Elbow 180 degree D73 exported to Vietnam

Elbow 180 degree D73 SCH80 Center distance is 127MM

Elbow 180 degree D73 SCH80 Center distance is 90MM

Carbon Steel DN100 90 Degree Elbow exported to Singapore

Carbon Steel DN100 90 Degree Elbow R520 (DN100(4)x90 Degree R520 x sch 80)

Carbon Steel DN100 x 45 Degree Elbow R520 (DN100(4)x45 Degree R520 x sch 80 (R216)

Elbow 180 degree D73 exported to Vietnam

Elbow 180 degree D73 SCH80 Center distance is 90MM

Elbow 180 degree D73 exported to Vietnam

Elbow 180 degree D73 SCH80 Center distance is 127MM

Elbow 180 degree D73 SCH80 Center distance is 90MM

304 SS elbows exported to Philippines

FLANGE,PIPE, SW, 4", SCH 150, 150 LB, 304 SS, 8-HOLES

ELBOW,PIPE, 4" DIA, BUTT WELD, 22.5 DEGREE, SCH 40, 304 SS

ELBOW,PIPE, 4", BW, 45 DEG, SCH 40, 304 SS

ASTM A335 P22 elbow exported to Korea

2.5" STD ASTM A335 P22 90 deg.

Short radius elbow

A234 WP11 elbows exported to Singapore

SMLS Elbow LR90

A234 WP11

Seamless steel elbow exported to Croatia

Seamless steel elbow, R=10D, manufactured from pipe API 5L prema / in accordance to 6002 000 JSS-1330-001 i 6002 000 MR-1330-002

  • 406,4 x 9,5 90° API 5L X 60
  • 406,4 x 9,5 45° API 5L X 60
  • 406,4 x 9,5 30° API 5L X 60
  • 219,1 x 6,4 90° API 5L X 52
  • 219,1 x 6,4 45° API 5L X 52

90E D DN250 SCH30 GB12459

90E 1.5D DN60 SUS304

High Pressure Elbow

Standard & Reducing High Pressure Elbows are available in any size and degree with optional radius


Wide variety for all areas of application

DIN
  • St 35.8 I
  • St 35.8 III
  • 15 Mo 3
  • 13 CrMo 4 4
  • 10 CrMo 9 10
  • St 35 N
  • St 52.0
  • St 52.4
EN
  • P235GH-TC1
  • P235GH-TC2
  • 16Mo3
  • 13CrMo4-5
  • 10CrMo9-10
  • X10CrMoVNb9-1
  • P215NL
  • P265NL
  • L360NB
  • L360NE
  • P355N
  • P355NL1
  • P355NH
ASME
  • WPB
  • WPL6
  • WPL3
  • WPHY 52
  • WP11
  • WP22
  • WP5
  • WP9
  • WP91
  • WP92

How to purchase pipe elbows?

Detecting the back arc of the elbow: Seamless elbow detection of the thickness of the back arc is an important task. Many large pipe elbow manufacturers or strict engineering inspection of the back arc is a must. It is related to the safety and stability of the pipeline operation.

Inspection end wall thickness

Mark

Packing

Inspection curved wall thickness

Measurement wall thickness

Protect the end of the bending

Everyone knows that both the pipeline and the seamless elbow are under pressure, that is, the pressure is very large when running. Under normal circumstances, the safety factor of the thickness of the seamless elbow designed and installed is about six times. For example, the 219*8 seamless elbow, the pipeline medium is ordinary water, the temperature is usually not higher than one hundred degrees Celsius, and the pressure required to blast such a seamless elbow is about 300 kg, that is, The pressure inside the pipeline needs to reach PN30, and the seamless elbow will be blasted, and the operating pressure of this elbow is probably about it. It is estimated that the maximum will not exceed PN6.4, which is generally around PN4.0, of course. With the corrosion of the pipeline, the seamless elbow will also be corroded to varying degrees. In order to ensure its safe operation, the necessity of overhaul is great.

The current process of making seamless elbows will lead to the phenomenon of back arc thinning. Under normal circumstances, the wall thickness of the mouth will be about two millimeters thinner than the back arc. The common thickness and pressure will not be thin even if the back arc is thinned. There are too many safety hazards, because the elbow has not been replaced until the elbow has a dangerous accident. But as a rigorous project, what is not the same, and the medium inside the pipeline is also responsible, not just water. There may be oil or other impurities, the temperature is high and the pressure is high, and the thickness of the back arc as the weak place determines the life of the seamless elbow. Therefore, the importance of detecting the back arc is naturally great. With a thickness gauge, read the thickness of a point at the elbow directly.

Detect the inner and outer diameters of the elbow: For example, the outer diameter dimension D of the elbow is detected: the data of the upper limit and the lower limit are referenced, and the actually measured outer diameter of the product is qualified between the upper and lower limits, and the unqualified product is outside the upper or lower limit range.

Detect the wall thickness of the elbow: use the thickness gauge to directly read the thickness of the thinnest part of the elbow.

Detect the center height of the elbow: first measure the length of the outer circle of the elbow. Using this length value /1.57, the value obtained by subtracting half of the diameter of the elbow is the center height of the elbow.

Detecting the weight of the elbow: The elbow is made of steel pipe. We only know the weight of the elbow when the elbow is cut, and the size of the elbow and the back arc of the elbow. The dimensions are basically the same. Let’s calculate the length of the back arc of the elbow: the diameter of the elbow is D, the radius of curvature is 1.5D, and the length of the back arc of the elbow is (1.5+0.5)*D*2*3.14/4 Simplification we can get, 1.5 times elbow back arc length L = D * 3.14. This is only an estimate. The value of the Chinese standard is slightly smaller than this value. After the length of the back arc is L, the weight of the steel pipe is calculated by the calculation formula of the steel pipe: (Da)*a*0.02466*L/1000, ( a is the wall thickness of the elbow), the unit of this weight is KG, so we can get the weight of the carbon steel elbow. If it is a stainless steel elbow, just replace 0.02466 with 0.02491. The calculated theoretical weight is then compared to the actual weight.

Radiographic inspection of elbows: Radiographic inspection detects volumetric defects of elbows, such as pores, slag inclusions, shrinkage cavities, and looseness.

Wall Thickness of Elbows

The weakest point on an elbow is the inside radius. ASME B16.9 only standardizes the center to face dimensions and some "squareness" dimensional tolerances. The wall thickness at the weld line location even is standardized, but not through the rest of an elbow. The standard states that the minimum tolerance will be within 12.5% of the minimum ordered wall thickness of the pipe. A maximum tolerance is specified only at the ends of the fitting.

Many providers of buttweld elbows (and tees) provide one schedule greater thickness so that sufficient wall thickness, after forming, remains.

Steel Pipe Elbow Coating

Along with build quality, the longevity and reliability of steel pipe elbows are highly dependent on the type and quality of the coating used. However, applying coatings to pipe elbows is not just about preventing corrosion, but can affect the evenness of flow through the pipe and the need to prevent contamination of pipe contents ((e.g. foodstuffs or drinking water). We offer corrosion resistance coating service for steel pipe elbow, our coating service includes light oiling, black painting, FBE coating, 2 layers or 3 layers PE coating, hot-dip galvanizing.

Pipe elbows size data

Elbow Size

An elbow is a pipe fitting installed between two lengths of pipe or tubing to allow a change of direction, usually a 90° or 45° angle, though 22.5° elbows are also made.

The ends may be machined for butt welding, threaded (usually female), or socketed, etc. When the two ends differ in size, the fitting is called a reducing elbow or reducer elbow.

  • Pressure: SCH5 to SCH160
  • Size range: 1/2 to 56 inches (DN 15 to DN 1,400mm), 22.5 Deg, 45 Deg, 90 Deg, 180 Deg
  • Manufacturing standards: ANSI, ISO, JIS and DIN
  • Process: butt welding, seamless, threaded , or socketed

Elbows are split into two groups which define the distance over which they change direction; the center line of one end to the opposite face. This is known as the "center to face" distance and is equivalent to the radius through which the elbow is bent.

Here below, for example, you will find the center to face distance of NPS 2 elbows (the A distance on the image)

  •  90°-LR : = 1½ x 2(NPS) x 25.4 A=76.2 mm
  •  180°-LR : = 2 times the 90° LR elbow A=152.4 mm
  • 90°-SR : = 2(NPS) x 25.4 A=50.8 mm
  • 180°-SR : = 2 times the 90° SR elbow A=101.6 mm

The center to face distance for a "long" radius elbow, abbreviated LR always is "1½ x Nominal Pipe Size (NPS) (1½D)", while the center to face distance for a "short" radius elbow, abbreviated SR even is to nominal pipe size.

3D elbows as an example, are calculated with:
3(D) x 2(NPS) x 25.4
Wall Thickness of Elbows

The weakest point on an elbow is the inside radius. ASME B16.9 only standardizes the center to face dimensions and some "squareness" dimensional tolerances. The wall thickness at the weld line location even is standardized, but not through the rest of an elbow. The standard states that the minimum tolerance will be within 12.5% of the minimum ordered wall thickness of the pipe. A maximum tolerance is specified only at the ends of the fitting.

Many providers of buttweld elbows (and tees) provide one schedule greater thickness so that sufficient wall thickness, after forming, remains.

Steel Pipe Elbow Coating

Along with build quality, the longevity and reliability of steel pipe elbows are highly dependent on the type and quality of the coating used. However, applying coatings to pipe elbows is not just about preventing corrosion, but can affect the evenness of flow through the pipe and the need to prevent contamination of pipe contents ((e.g. foodstuffs or drinking water). We offer corrosion resistance coating service for steel pipe elbow, our coating service includes light oiling, black painting, FBE coating, 2 layers or 3 layers PE coating, hot-dip galvanizing.

Note:
  • 90 Degree Elbow – where change in direction required is 90°
  • 45 Degree Elbow – where change in direction required is 45°
  • L/R - Long radius, S/R - Short radius
Nominal pipe size Outside Diameter 
at Bevel 
Center to End Center to Center Back to Faces
45° Elbows 90°Elbows 180°Return
H
        F
       P
       K

DN

INCH

Series A Series B LR LR SR LR
SR
LR
SR
15
1/2
21.3
18
16
38
-
76
-
48
-
20
3/4
26.9
25
16
38
-
76
-
51
-
25
1
33.7
32
16
38
25
76
51
56
41
32
11/4
42.4
38
20
48
32
95
64
70
52
40
11/2
48.3
45
24
57
38
114
76
83
62
50
2
60.3
57
32
76
51
152
102
106
81
65
21/2
76.1(73)
76
40
95
64
191
127
132
100
80
3
88.9
89
47
114
76
229
152
159
121
90
31/2
101.6
-
55
133
89
267
178
184
140
100
4
114.3
108
63
152
102
305
203
210
159
125
5
139.7
133
79
190
127
381
254
262
197
150
6
168.3
159
95
229
152
457
305
313
237
200
8
219.1
219
126
305
203
610
406
414
313
250
10
273.0
273
158
381
254
762
508
518
391
300
12
323.9
325
189
457
305
914
610
619
467
350
14
355.6
377
221
533
356
1067
711
711
533
400
16
406.4
426
253
610
406
1219
813
813
610
450
18
457.2
478
284
686
457
1372
914
914
686
500
20
508.0
529
316
762
508
1524
1016
1016
762
550
22
559
-
347
838
559
600
24
610
630
379
914
610
650
26
660
-
410
991
660
700
28
711
720
442
1067
711
750
30
762
-
473
1143
762
800
32
813
820
505
1219
813
850
34
864
-
537
1295
864
900
36
914
920
568
1372
914
950
38
965
-
600
1448
965
1000
40
1016
1020
631
1524
1016
1050
42
1067
-
663
1600
1067
1100
44
1118
1120
694
1676
1118
1150
46
1168
-
726
1753
1168
1200
48
1220
1220
758
1829
1219
Note:
  1. Do not use the figures in the parenthesis as far as possible
  2. Please first select A series.

Weight of elbows

NPS
inches
ELBOWS
LR 90°
ELBOWS
SR 90°
Sch.
5S
Sch.
10S
Sch.
40S
Sch.
80S
Sch.
5S
Sch.
10S
Sch.
40S
Sch.
80S
1/2 0.05 0.06 0.08 0.10 0.03 0.04 0.05 0.07
3/4 0.06 0.07 0.09 0.11 0.04 0.05 0.06 0.07
1 0.09 0.15 0.18 0.20 0.06 0.10 0.12 0.13
1 1/4 0.13 0.20 0.25 0.35 0.09 0.13 0.17 0.12
1 1/2 0.18 0.30 0.40 0.50 0.12 0.20 0.27 0.33
2 0.30 0.50 0.70 0.90 0.20 0.33 0.47 0.60
2 1/2 0.60 0.85 1.35 1.80 0.40 0.60 0.90 1.20
3 0.90 1.30 2.00 2.90 0.60 0.90 1.35 1.90
4 1.40 2.00 4.00 5.90 0.90 1.35 2.65 3.90
5 2.90 3.60 6.50 9.70 1.95 2.40 4.35 6.50
6 4.00 5.00 10.5 16.0 2.70 3.35 7.00 10.5
8 7.40 10.0 21.5 33.5 4.90 6.70 14.5 22.5
10 13.6 16.8 38.5 52.5 9.10 11.2 25.6 35.0
12 23.4 27.0 59.0 79.0 15.6 18.0 39.5 53.0
14 29.0 35.0 70.0 94.0 19.3 23.5 47.0 63.0
16 41.3 47.0 95.0 125 27.5 31.5 63.5 84.0
18 51.8 59.0 120 158 34.5 39.5 80.0 105
20 73.0 85.0 146 194 49.0 57.0 98.0 129
24 122 140 210 282 82.0 94.0 140 188
Approximate weights in kg, density 8 kg/dm3

Angularity Tolerances 

ND Max off angle Max off plane
Q P
1/2 a 4 1 2
5 a 8 2 4
10 a 12 3 5
14 a 16 3 7
18 a 24 4 10
26 a 30 5 10
32 a 42 5 13
44 a 48 5 20

Key Specifications/Special Features and Materials:

the material is selected accoding to the application use such as high temperature use,sanitary fitting,regular industrial use etc.

  • Carbon steel: ASTM A234 WPB, WPC, ASTM A420 WPL1, WPL3, WPL6, WPHY-42/46/52/56/60/65/70
  • Stainless steel: ASTM A403 WP304/304L, WP316/316/L, WP321, WP347 and WPS31254
  • Alloy steel: ASTM A234 WP1/WP12/WP11/WP22/WP5/WP7/WP9/WP91
  • Abrasion resistant material:Ceramic lined, Ceramic tile lined , Bi-metal clad pipe,
  • Manufacturing standards: ANSI, ISO, JIS and DIN.

Application of pipe elbows: Petroleum, chemical, power, gas, metallurgy, shipbuilding, construction, etc.

Wall Thickness of Elbows

The weakest point on an elbow is the inside radius. ASME B16.9 only standardizes the center to face dimensions and some "squareness" dimensional tolerances. The wall thickness at the weld line location even is standardized, but not through the rest of an elbow. The standard states that the minimum tolerance will be within 12.5% of the minimum ordered wall thickness of the pipe. A maximum tolerance is specified only at the ends of the fitting.

此博客中的热门博文

ANSI/ASME B16.25 standard specification

ANSI/ASME B16.25 is the standard covers the preparation of butt welding ends of piping components to be joined into a piping system by welding. The standard includes the butt welding ends information of General scope, Welding Bevel designs, Preparation of inside diameter of welding ends and the tolerances involved. ANSI/ASME B16.25, Buttwelding Ends Following are the dimensions of the butt welding pipe ends according to ANSI B16.25. It includes requirements forwelding bevels, for external and internal shaping of heavy-wall components, and for preparation of internal ends (including dimensions and tolerances). Coverage includes preparation for joints with the following: (a) no backing rings (b) split or noncontinuous backing rings (c) solid or continuous backing rings (d) consumable insert rings (e) gas tungsten arc welding (GTAW) of the root pass Details of preparation for any backing ring must be specified when ordering the component. ANSI/ASME B16....

How to Calculate a Pipe Bend?

Pipe fittings are necessary to join together pipes, or to change the direction of an existing pipe. Pipes and pipe fittings are made of a variety of materials, depending on the fluid or gas being transported. Most pipe fittings tend to be either threaded or able to slip over the pipes they connect. Whether you are using steel pipes of PVC pipes, a chemical solvent is required to create a seal between the pipe and the fittings. Calculate a Pipe Bend Measure the required length of the pipe to be installed, keeping in mind the extra length required where the pipe will be inserted into the fitting. Mark this length on the pipe. How to Calculate a Pipe Bend Whether you are bending pipe for running electrical conduit or a metal project, calculating the bend for the start and end point can be an important factor. While there are different types of pipe benders on the market, they all share a common identification for the operation. Identified on all pipe benders is the size of pipe the unit w...

ANSI Flange Standards

The American National Standard Institute, ANSI, has been overseeing guidelines and standards for products manufactured through several sectors. WHAT IS ANSI? ANSI-approved flanges are used for the industrial market which handles gas, air and steam process systems. Originally formed in 1918, the American National Standards Institute is headquartered in Washington, DC, and is widely recognized as the American organization responsible for overseeing the national standards and conformity assessment system for products, services, processes, systems, and personnel. ANSI works domestically with American government agencies and organizations, as well as with international entities, to make ANSI standards useful around the world. Prior to the creation of ANSI, standards for engineering and equipment such as flanges were developed by the American Institute of Electrical Engineers (AIEE or IEEE), the American Society of Mechanical Engineers (ASME), the American Institute of Mi...